Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.

Identifieur interne : 003C83 ( Main/Exploration ); précédent : 003C82; suivant : 003C84

Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.

Auteurs : Suchita Bhandari [États-Unis] ; Takeshi Fujino ; Shiv Thammanagowda ; Dongyan Zhang ; Fuyu Xu ; Chandrashekhar P. Joshi

Source :

RBID : pubmed:16575593

Descripteurs français

English descriptors

Abstract

In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.

DOI: 10.1007/s00425-006-0269-1
PubMed: 16575593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.</title>
<author>
<name sortKey="Bhandari, Suchita" sort="Bhandari, Suchita" uniqKey="Bhandari S" first="Suchita" last="Bhandari">Suchita Bhandari</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fujino, Takeshi" sort="Fujino, Takeshi" uniqKey="Fujino T" first="Takeshi" last="Fujino">Takeshi Fujino</name>
</author>
<author>
<name sortKey="Thammanagowda, Shiv" sort="Thammanagowda, Shiv" uniqKey="Thammanagowda S" first="Shiv" last="Thammanagowda">Shiv Thammanagowda</name>
</author>
<author>
<name sortKey="Zhang, Dongyan" sort="Zhang, Dongyan" uniqKey="Zhang D" first="Dongyan" last="Zhang">Dongyan Zhang</name>
</author>
<author>
<name sortKey="Xu, Fuyu" sort="Xu, Fuyu" uniqKey="Xu F" first="Fuyu" last="Xu">Fuyu Xu</name>
</author>
<author>
<name sortKey="Joshi, Chandrashekhar P" sort="Joshi, Chandrashekhar P" uniqKey="Joshi C" first="Chandrashekhar P" last="Joshi">Chandrashekhar P. Joshi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16575593</idno>
<idno type="pmid">16575593</idno>
<idno type="doi">10.1007/s00425-006-0269-1</idno>
<idno type="wicri:Area/Main/Corpus">003E38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003E38</idno>
<idno type="wicri:Area/Main/Curation">003E38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003E38</idno>
<idno type="wicri:Area/Main/Exploration">003E38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.</title>
<author>
<name sortKey="Bhandari, Suchita" sort="Bhandari, Suchita" uniqKey="Bhandari S" first="Suchita" last="Bhandari">Suchita Bhandari</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fujino, Takeshi" sort="Fujino, Takeshi" uniqKey="Fujino T" first="Takeshi" last="Fujino">Takeshi Fujino</name>
</author>
<author>
<name sortKey="Thammanagowda, Shiv" sort="Thammanagowda, Shiv" uniqKey="Thammanagowda S" first="Shiv" last="Thammanagowda">Shiv Thammanagowda</name>
</author>
<author>
<name sortKey="Zhang, Dongyan" sort="Zhang, Dongyan" uniqKey="Zhang D" first="Dongyan" last="Zhang">Dongyan Zhang</name>
</author>
<author>
<name sortKey="Xu, Fuyu" sort="Xu, Fuyu" uniqKey="Xu F" first="Fuyu" last="Xu">Fuyu Xu</name>
</author>
<author>
<name sortKey="Joshi, Chandrashekhar P" sort="Joshi, Chandrashekhar P" uniqKey="Joshi C" first="Chandrashekhar P" last="Joshi">Chandrashekhar P. Joshi</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="ISSN">0032-0935</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (immunology)</term>
<term>Cellulase (genetics)</term>
<term>Cellulase (immunology)</term>
<term>Cellulase (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>In Situ Hybridization (MeSH)</term>
<term>Membrane Proteins (immunology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Stress, Mechanical (MeSH)</term>
<term>Trees (enzymology)</term>
<term>Trees (genetics)</term>
<term>Wood (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Arbres (enzymologie)</term>
<term>Arbres (génétique)</term>
<term>Bois (MeSH)</term>
<term>Cellulase (génétique)</term>
<term>Cellulase (immunologie)</term>
<term>Cellulase (métabolisme)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Hybridation in situ (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines d'Arabidopsis (immunologie)</term>
<term>Protéines membranaires (immunologie)</term>
<term>RT-PCR (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cellulase</term>
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cellulase</term>
<term>Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulase</term>
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Cellulase</term>
<term>Glucosyltransferases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cellulase</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulase</term>
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>In Situ Hybridization</term>
<term>Molecular Sequence Data</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Analysis, DNA</term>
<term>Stress, Mechanical</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Bois</term>
<term>Contrainte mécanique</term>
<term>Données de séquences moléculaires</term>
<term>Hybridation in situ</term>
<term>RT-PCR</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16575593</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>11</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0935</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>224</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.</ArticleTitle>
<Pagination>
<MedlinePgn>828-37</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhandari</LastName>
<ForeName>Suchita</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fujino</LastName>
<ForeName>Takeshi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thammanagowda</LastName>
<ForeName>Shiv</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Dongyan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fuyu</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Joshi</LastName>
<ForeName>Chandrashekhar P</ForeName>
<Initials>CP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AY535003</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C429844">KOR1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16575593</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-006-0269-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 2004 Jun 9;334:73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Aug;219(4):694-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jan 4;295(5552):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11778033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1740-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Dec 10;15(23):9627-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3697078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):674-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15278458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(5):730-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2529-2540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Sep;54(390):2187-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5563-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 May;58(5):506-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 Aug 21;296(1-2):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9114071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 May;9(5):689-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Oct;7(10):461-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Mar;42(3):251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Aug 25;15(16):6643-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3628002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):769-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:245-276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 1999;46:39-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1137-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Aug 10;43(31):10080-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15287736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Fujino, Takeshi" sort="Fujino, Takeshi" uniqKey="Fujino T" first="Takeshi" last="Fujino">Takeshi Fujino</name>
<name sortKey="Joshi, Chandrashekhar P" sort="Joshi, Chandrashekhar P" uniqKey="Joshi C" first="Chandrashekhar P" last="Joshi">Chandrashekhar P. Joshi</name>
<name sortKey="Thammanagowda, Shiv" sort="Thammanagowda, Shiv" uniqKey="Thammanagowda S" first="Shiv" last="Thammanagowda">Shiv Thammanagowda</name>
<name sortKey="Xu, Fuyu" sort="Xu, Fuyu" uniqKey="Xu F" first="Fuyu" last="Xu">Fuyu Xu</name>
<name sortKey="Zhang, Dongyan" sort="Zhang, Dongyan" uniqKey="Zhang D" first="Dongyan" last="Zhang">Dongyan Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Bhandari, Suchita" sort="Bhandari, Suchita" uniqKey="Bhandari S" first="Suchita" last="Bhandari">Suchita Bhandari</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16575593
   |texte=   Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16575593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020